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Outline of Talk

A few relevant definitions:
◦ Secure computing paradigms
◦ Requirements pertaining to functional & data privacy

◦ Security models 

Brief  review of  some of  the existing, more “mainstream” secure computing paradigms:
◦ (Secure) Multiparty Computation (MPC)
◦ Fully Homomorphic Encryption (FHE)

◦ Indistinguishability Obfuscation (IO)

The focus of  today’s talk: Overview:
1. Blockchain-based secure computation using garbled functions (a.k.a. GABLE project)

◦ Focus of  an LDRD at Sandia “Blockchain Derived Secure Computation” that ran from 2017-2020.

2. Efficient block ciphers based on reversible computing, & a new derived secure computing paradigm
◦ Work out of  a group at Boston University (BU) and the University of  Central Florida (UCF).
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What do we mean by “Secure Computing?”

Computation featuring (strong) security properties.

The secure computing concept typically includes a requirement for privacy, which may include:
◦ Data privacy – Plaintext data may not (feasibly) be inferred by any unauthorized parties.

◦ In general, “unauthorized parties” could even include the entity that is running the computation!

◦ Functional privacy – The nature of  the function being computed may not (feasibly) be inferred by 
unauthorized parties.
◦ Again, most generally, unauthorized parties could include the entity that is running the computation.

Why might we want these properties?  Some examples:
◦ Data privacy – For operations combining confidential data from different privacy/jurisdictional domains; 

also allows outsourcing of  computational services without compromising confidentiality of  data.

◦ Functional privacy – Can obscure proprietary algorithmic innovations, or protect strategic intent; can 
protect e.g. restricted cryptographic capabilities (make them available for use by unauthorized parties).

In addition to privacy properties, we may also want other security-related properties, such as 
robustness, reliability, auditability/verifiability, non-repudiability, integrity…

◦ We’ll not go into these properties in great detail in this talk, but will mention some of  them in passing.
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A little more detail on privacy requirements:

In general, we may wish for the privacy of  one or more of  the following to be protected…
◦ Input data to a computation

◦ Intermediate data internal to the computation

◦ Information about the structure/function/implementation of  the computation itself

◦ Output data (results) from a computation

And in general, we may wish for data to be protected from access by one or more of:
◦ (Other) parties providing input to the same computation

◦ Entities that are executing the computation

◦ (Other) parties that are receiving output from the same computation

◦ Other parties not involved in the computation who may happen to intercept (encrypted) data

Further, in general one could specify more fine-grained security profiles with various levels of  
granularity, specifying which authorities are authorized to access which specific pieces of  data.

◦ An “authority” is in general an abstract role which may be held by one or more parties. 

Similarly, data and functional integrity denotes that it is infeasible for unauthorized parties to 
alter/write invalid data or functional behavior in ways that are undetectable to honest participants.

◦ Like as with read permissions, write permissions may similarly be fine-grained.
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Security Model

It’s of  course important when analyzing the capabilities of  any secure computing paradigm, or a 
more detailed protocol, to pay careful attention to the security model, which addresses things like:

◦ What kind of  security properties are we even trying to provide?
◦ What assumptions do we make regarding the behavior/trustworthiness of  authorized participants in a given 

protocol?  What actions are they allowed/not allowed to do, to be considered in compliance w. the protocol?
◦ And, what security properties, if  any, still remain satisfied even in the presence of  particular types of  non-compliance?

◦ What assumptions do we make regarding the kinds of  capabilities that an adversary may or may not have?
◦ How much unauthorized information, and what specific information, are we assuming an adversary may potentially possess?
◦ How many/which participants in the protocol do we assume may potentially be (partially or fully) compromised by an adversary?
◦ At what point(s) in the protocol sequence diagram(s) may an adversary potentially insert/delete/modify/delay messages?
◦ What kind of  computational capabilities do we assume an adversary may or may not have?

The differences in security models between different secure computing paradigms are of  course 
important to keep in mind when comparing different paradigms (and detailed implementations).

◦ E.g., it isn’t always possible to substantiate that one approach is overall strictly “better” or “worse” than 
another in general if  their security models are making very different, and non-comparable assumptions.

◦ Whether a given paradigm/protocol is appropriate to a given real-world scenario or not will typically depend 
a lot on how appropriate the assumptions made in the security model are to the real-world circumstances.

The two new secure computing approaches we’ll discuss have somewhat different security models.
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Brief Overview of Some Existing Secure Computing Paradigms
(Secure) Multiparty Computation (MPC)

◦ Typical setup: Several parties want to jointly compute a function of  their private data, but without revealing any 
more information to each other about their private data than is necessarily implied by the (shared) result of  the computation.
◦ This setup could be further refined, by, e.g., not sharing all of  the output data with all of  the participants, i.e., fine-grain the reader authority.

◦ The requirement then becomes, no more input information is leaked to any party than what’s implied by the outputs they are authorized to read.

◦ Standard MPC does not care about functional privacy, but, it can be extended to also support functional privacy using 
the concept of  a universal circuit, so that the function to be executed just becomes another private input.

Fully Homomorphic Encryption (FHE)
◦ Setup: Compute directly on encrypted data, without decryping it.  Given a function want .
◦ Key breakthrough: Gentry ‘09, “bootstrapped” method using lattice crypto, doi:10.1145/1536414.1536440.

◦ Works, but typically has very large overhead.

◦ More efficient techniques have been developed since then, but still have significant complexity.

Indistinguishability Obfuscation (IO)
◦ Obfuscation attempts to replace a program with an unintelligible, but functionally equivalent program.
◦ Barak et al. (2001, 2012) showed that perfect (i.e., black-box) obfuscation is impossible!

◦ Defined indistinguishability obfuscation as a weaker notion: Can’t tell which of  the functionally equivalent programs was obfuscated.

◦ Goldwasser & Rothblum (2007) defined a closely related notion of  Best-Possible Obfuscation:
◦ Definition: Obfuscated program leaks no more information than any other functionally equivalent program.
◦ This definition is equivalent to IO for the case of  efficient obfuscation (which is the most interesting case for practical applications).
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Two New Approaches We’ll Discuss

(#1) The approach that was investigated in the “blockchain-derived secure computing” LDRD:
◦ This can be considered an application/variation on the basic concepts of  garbled universal circuits (GUC).
◦ Security model is slightly different from the usual setup, implementations explored were slightly different.
◦ Main application: 

◦ Apply techniques of  garbled computation to demonstrate a capability for secure computing on public blockchains (such as Ethereum).

◦ We built and demonstrated a detailed approach called “Garbled Autonomous Bots Leveraging Ethereum” (GABLE).

◦ Can also be viewed as providing a somewhat more limited version of  some of  the capabilities that you might want out 
of  FHE (obscuration of  user data) and/or IO (obscuration of  detailed functionality).
◦ We’ll discuss this comparison briefly.

(#2) The approach from the BU/UCF group (Chamon, Jakes-Schauer, Mucciolo, & Ruckenstein):
◦ This one is billed primarily as an alternative to homomorphic encryption (i.e., serving many of  the same purposes).

◦ But in suitable contexts, as with GABLE, it can also apparently provide a limited version of  some of  the same characteristics you might want out of  
indistinguishability obfuscation / best possible obfuscation.

◦ Includes a technique for constructing efficient (logarithmic-depth) block ciphers, apparently highly secure.
◦ Security argument is based on concepts of  chaos from statistical physics – somewhat unconventional formal approach.

◦ They build on this idea to construct an FHE-like approach for operating directly on encrypted data.
◦ The specific key is used to derive a program that can operate on encrypted data, but the key/plaintext data can’t be extracted from the program!

◦ Like FHE, effectively separates the security domain of the input provider (who knows the data & key) from that of the entity executing the program (who doesn’t).

◦ As far as I am aware, this is a somewhat novel/unique, but potentially quite useful setup for secure computing!

◦ Construction of  the secure computation is reasonably efficient (polynomial overhead).
◦ The authors are looking to get more feedback from professional cryptographers, esp. FHE experts
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Blockchain-Derived Secure Computing LDRD / GABLE System
Basic setup:

◦ Some entity C (“the Company”) has a private function F requiring robust online execution.

◦ They generate G, a garbled (encrypted) version of  F, with associated input keys.
◦ Input keys are distributed to respective input providers, and an executor for G is published (e.g. on the blockchain)

◦ The executor accepts inputs from input providers, and executes the garbled program (once).
◦ Or, one variant (not yet published) executes the program off-chain and only verifies results on-chain, for greater efficiency.

◦ Potentially could also be extended to a multiple-use scenario using reusable garbled circuits. (Needs further study.)

◦ Authorized readers/spectators may retrieve/interpret results (also using respective keys).
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Garbled Table Abstraction
An important primitive for (use-once) private function evaluation (PFE) on encrypted data.

◦ Functions are encoded as lookup tables, but may be chained together to build up complex functionality.
◦ We explored two different chaining methods: Garbled Finite State Machines (GFSM) and Garbled Configurable Universal Circuits (GCUC)
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Finite-State Machine Execution Picture
Application logic is represented by a finite-state machine (FSM) 

◦ State machine execution is unrolled to prevent replay attacks
◦ Each step of  execution is independently garbled

Randomly-generated keys associated with assignments of  values to input variables ௜ ௜
௝ (for each time step ) 

are given to authorized input providers
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Configurable Universal Circuits

This is just a refinement of  the previous picture.
◦ Now, state-updating circuitry is subdivided into an interconnect fabric and a layer of  application gates.
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Garbling the Interconnect Fabric
Can embed an arbitrary interconnect fabric in a -depth Thompson network:

◦ Each switch block here can be garbled similarly to a pair of  Boolean gates
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GABLE Demo #1 – “Supply Chain”

“Toy” example to demonstrate garbled finite-state machine capability
◦ Models a tracking system for items passing down a supply chain as different vendors do their value-adds

◦ In this demo, each vendor can only “see” their own states – can’t see the structure/activity on the rest of  the supply chain
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GABLE Demo #2 – “Multi-Party Auction” 
A simple circuit suffices to update the state in a bit-serial multi-party auction protocol

◦ This test case was used to concretely compare efficiency between the GFSM and GCUC approaches
◦ Logarithmic-overhead GCUC approach beats exponential-complexity GFSM approach for >7 bidders.
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Chamon et al. approach

Two important papers so far:
◦ C. Chamon, E.R. Mucciolo, & A.E. Ruckenstein, “Quantum statistical mechanics of  encryption: reaching the 

speed limit of  classical block ciphers,” arXiv:2011.06546 [cs.CR] (Nov. ‘20, updated Mar. ‘22).

◦ C. Chamon, J. Jakes-Schauer, E.R. Mucciolo, and A.E. Ruckenstein, “Encrypted Operator Computing: an 
alternative to Fully Homomorphic Encryption,” arXiv:2203.08876 [cs.CR] (March 2022).

The first paper shows a construction via which one can generate apparently optimal block ciphers by 
composing only 2- and 3-bit classical reversible gates.

◦ Argument for its strength is based on thermodynamic concepts of  quantum and classical chaos!

The second paper builds on the first by describing a novel secure computing scheme called 
Encrypted Operator Computing (EOC).

◦ Uses a random block cipher , as per the first paper, to encrypt/decrypt data. (Quantum “change of  basis.”)
◦ Can also be extended to support an asymmetric cryptography framework

◦ Given a function to compute, generates an encrypted operator ா that evaluates on input data 
without ever decrypting ! (Computes directly “in the encrypted basis.”)
◦ The representation of  𝐹ா “scrambles” 𝐹 and 𝐸 together in such a way that neither of  them can be extracted, given just 𝐹ா!

◦ Allows separating knowledge of  the function and knowledge of  the data into separate security domains.
◦ Key difference from FHE is that both the function and the data depend on the “key” E, but you can’t infer either one from the other!
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Classical Reversible Logic Gates

The traditional concept of  classical (i.e., not specifically quantum) fully-reversible logic gates 
dates back to work by Ed Fredkin and Tommaso Toffoli at MIT in the late ‘70s / early ‘80s.

◦ Simply put, such operators apply a permutation or bijective map to the space of  bit vectors.

◦ The concept was later generalized to (unitary) “quantum gates” by David Deutsch in the late ‘80s.
◦ The whole field of  (gate-based) quantum computing is based on this.

The field of  reversible computing studies what can be done using operations like these.
◦ Shown to be computation universal (with some overheads) by Lecerf (‘63) and Bennett (‘73).

◦ There are important applications in energy-efficient computing (e.g., beating the Landauer limit).
◦ In cryptography, these operations are also quite useful in symmetric cryptography as well as (perhaps 

counter-intuitively) in the construction of  one-way functions. 
◦ E.g., every step in SHA-256 is reversible up until you discard the 𝑊௧ vector (which is derived from the input message block).

The Chamon et al. constructions are entirely based on reversible operations!
◦ Illustrates the incredible power of  this paradigm…
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Block Ciphers
A classic (substitution) cipher is bijective map from the message alphabet to itself, . 

◦ I.e., a permutation of  the message alphabet. (Basic example: Rot-13 of  the Roman alphabet.)

A block cipher is similar, except that it operates on entire fixed-size blocks of  data from the message, e.g., 
512-bit blocks. ௡ ௡.

◦ An advantage of  using large blocks is that repetition of  any given block is much rarer, rendering brute-force 
cryptanalysis much more difficult.
◦ An idealized case would be if  𝐵 was a random permutation, meaning there are no regularities between encryption of  different blocks.

◦ However, a truly random permutation on a large blocksize would be infeasible to specify: Lookup table with 2௡ entries.

◦ In practice, block ciphers tend to use pseudo-random permutations from some more limited family.
◦ Some requirements:

◦ There have to be too many pseudo-random permutations in the family to feasibly search them all (e.g., large seed lengths, generated with high entropy).

◦ The pseudo-random permutation should be infeasible to distinguish from a random permutation given a polynomial number of examples.

◦ It’s been known for a while that good pseudo-random permutations can be obtained by randomly composing small 
(at least 3-bit) random permutations – i.e., reversible logic gates.

This problem is closely related to the problem of  information scrambling by random quantum circuits 
in the context of  quantum computing – relevant to quantum supremacy demonstrations.

◦ Best results prior to this one demonstrated good pseudo-random quantum scrambling with ଶ gates.
◦ Example reference: A. Harrow & S. Mehraban, “Approximate unitary t-designs by short random quantum circuits using nearest-neighbor and long-

range gates,” arXiv:1809.06957 [quant-ph] (2018).

The Chamon et al. work improves this bound to for the classical case.
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Overview of Methods in new Chamon et al. block cipher work
Feasibility of  plaintext & ciphertext attacks related to out-of-time order correlators (OTOCs).

◦ A measure of  quantum chaos – but also remains relevant in a classical reversible context.
◦ Four-point correlation function between two suitable probe operators at different times

In this work, the operators used for defining the OTOCs are called “strings”
◦ In this paper, string is a technical term for a composition of  operators describing the input bits being modified and 

the output bits being measured
◦ Corresponds to attacks in which the attacker examines the effect on the output (ciphertext) of  changing certain input (plaintext) bits

The analytical methods used in this work involve translating the string operators from the computational 
(bit) space into a dual string space to facilitate analysis.

◦ In the dual space, nonlinear reversible gates transform individual strings into superpositions of  strings.

A particular 3-layer architecture (argued to be optimal) is 
studied/analyzed in this work:

◦ A layer of  nonlinear 3-bit gates, bookended by layers of  linear gates.
◦ The linear gates (e.g., CNOT) “expand” the strings (to cover more bits)
◦ The nonlinear gates (e.g., Toffoli) “proliferate” the strings 

(turning pure strings into superpositions)
◦ Gates organized in hierarchical structure to exponentially spread info.

As the circuit becomes deeper, the OTOCs vanish, indicating that the resulting permutation is becoming 
indistinguishable from random.

◦ Physicists are happy with this metric – is it seen as adequate / sufficiently rigorous by cryptographers?
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Some Analytical/Numerical Results on the new Block Cipher

Shows OTOC falling off  
rapidly with circuit depth.

Numerical results were 
averaged over a few dozen 
random instances of  the 
cipher.

◦ Each tested over 108 random 
input blocks

Numerical results reached a 
floor of  ି଼ only because 
of  fixed sample size (number 
of  input blocks) of  ଼.

◦ Numerical results well 
validate theoretical 
predictions below this limit
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Encrypted Operator Computing
(EOC)

A novel secure computing paradigm!
◦ Based on reversible gates and the new block cipher.

Basic setup:
◦ The system builder has a function 

◦ Generates an encrypter 𝐸
◦ Pseudo-random cipher as per previous paper

◦ 𝐸 and 𝐹 are “folded together” to 
produce an encrypted operator 𝐹ா.
◦ NOTE: It is infeasible to infer

either E or F, given just 𝐹ா !

◦ 𝐸 and 𝐹ா are then given to the user 
(input provider / output reader) and 
executor (compute server).
◦ Can also subdivide 𝐸 for multiple 

users with disjoint security domains, 
for multiparty applications.

◦ The user has plaintext input
◦ Encrypts & sends to executor

◦ Executor operates in the
encrypted domain
◦ Doesn’t need to know either

the input or the function 𝐹!
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Remarks on relationships between EOC & 
other secure computing paradigms

Comparison with secure Multiparty Computation (MPC) paradigm:
◦ Like in MPC, in a multiparty setting we can hide users’ inputs from each other (& from the executor)
◦ Like in MPC with garbled universal circuits (as in GABLE), we can also hide the function being computed from 

users (& from the executor), at least in a use-once scenario
◦ However, the overall overhead factor is larger (polynomial instead of  logarithmic).

Comparison with the Fully Homomorphic Encryption (FHE) paradigm:
◦ In FHE systems, the execution algorithm does not depend on the specific key (only on the encryption scheme).
◦ In contrast, in EOC, the execution algorithm ா is derived from the specific key (the encrypter ), yet

does not reveal the specific key to the executor.
◦ Unlike in FHE, the execution algorithm has to be rebuilt for each different set of  users (with different security domains).

◦ So, it maintains the property that the user data is kept hidden from the entity executing the computation.
◦ And, it maintains the property that it can be applied multiple times to different input data from the same set of  users.

◦ Polynomial overheads, can be competitive with FHE

Comparison with the Indistinguishability Obfuscation (IO)/Best-Possible Obfuscation Paradigm:
◦ Due to the classic Barak impossibility result, if  the user and executor domains are combined together, 

◦ the union of  them cannot completely hide the plaintext function 𝐹, however…

◦ With the domains separated, it does not appear possible for either the user or the executor by itself to infer .
◦ Thus, if  you can assume no collusion between user and executor, we can effectively hide the plaintext function from both.
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Overview of Methods used in EOC Work

The function to be executed is expressed as a reversible circuit.
◦ This is always efficiently possible, given some ancilla bits (temporary memory), and

some space for garbage output bits (generally required for reversibility).

The 3-stage cipher from previous work is able to be simplified to a 2-stage cipher 
using probabilistic encryption

◦ I.e., a random salt is added to the plaintext input, so that there are many possible 
ciphertexts for each plaintext.

◦ This allows the expression of  the encrypter as just ,
◦ Where 𝐿 is the linear stage, and 𝑁 the nonlinear stage.

◦ This then leads to a two-stage “folding” process, wherein we fold first the linear stage into 
(expanding the circuit), and then fold the nonlinear stage into that (further expanding).

◦ After each stage, we transform the resulting circuit in ways that obliterate the separation between gates of  the 
original function 𝐹 and the encryption circuit 𝐸.

Further randomization of  the resulting circuit takes place by randomly inserting 
pairs of  NOT gates between individual stages (“chips”) of  the encrypted operator 
and then absorbing them into the circuits on each side with further transformations.

◦ There are many more details, but I’m out of  time!   Read the paper.
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Conclusion

The Blockchain-Derived Secure Computing LDRD project at Sandia successfully 
demonstrated a means (GABLE) to achieve functional and data privacy on a 
blockchain, but it did have some key limitations…
◦ “Use-once” restriction

The new Encrypted Operator Computing (EOC) method by Chamon et al. seems to 
offer many of  the same security properties as GABLE, with some pros/cons:
◦ Pro: Not limited by use-once restriction!
◦ Con: Polynomial instead of  logarithmic overhead in implementation.
◦ Con: Security proofs are perhaps not quite completely rigorous yet.

But: In my opinion, the Chamon et al. method represents an important fundamental 
advance in the secure computing field (both a new setup/paradigm, and a new 
algorithm with some very nice properties), and is well worth further study.
◦ The authors encourage feedback, and I’d be happy to put anyone in touch with them! 
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